Lineare Gleichungssysteme mit Parameter Übung

1. Bestimmen Sie $a \in \mathbb{R}$ so, dass das Gleichungssystem unlösbar ist.

I)
$$x_1 + 2x_2 - x_3 = 2$$

a) II) $ax_2 + 2x_3 = 2$
III) $2x_1 - x_2 + x_3 = 3$
b) II) $x_1 + x_2 + 2x_3 = 1$
III) $3x_1 - 2x_2 + ax_3 = 5$

a) II)
$$ax_2 +2x_3 = 2$$

III)
$$2x_1 + 4x_2 + x_3 = 1$$

I)
$$2x_1 - x_2 + x_3 = 3$$

b) II)
$$x_1 + x_2 + 2x_3 = 1$$

III)
$$3x_1 - 2x_2 + ax_3 = 5$$

2. Bestimmen Sie den Parameter $a \in \mathbb{R}$ so, dass das Gleichungssystem unendlich viele Lösungen besitzt.

I)
$$x_1 + x_2 + 2x_3 = 2$$

I)
$$x_1 + x_2 + 2x_3 = 2$$
 I) $3x_1 + 2x_2 = 1$ a) II) $2x_1 + x_2 + 2x_3 = 1$ b) II) $6x_1 + 2x_2 + (a+3)x_3 = -2$ III) $-x_1 + x_2 = 3$

III)
$$2x_1 + ax_3 = -2$$

I)
$$3x_1 + 2x_2 = 1$$

b) II)
$$6x_1 + 2x_2 + (a+3)x_3 = -2$$

$$III) -x_1 +x_2 = 3$$

3. Lösen Sie die folgenden linearen Gleichungssysteme in Abhängigkeit von a $\in \mathbb{R}$.

a) I)
$$x + 2y = 2$$

ay = 0

b) I)
$$ax -y = 2$$

II) $-3x +3y = -5$

I)
$$-x_1$$
 $+3x_3$ = 2 I) $2x_1$ $+x_2$ = 1 + 2a c) II) $+2x_2$ $+x_3$ = 2 d) II) $2x_1$ $+3x_2$ $+3x_3$ = 2 - 3a III) $+(a-4)x_3$ = 0 III) $4x_1$ $+3x_2$ $+2x_3$ = 3

III)
$$+2x_2 + x_3 = 2$$

 $+(a-4)x_3 = 0$

I)
$$2x_1 + x_2 = 1 + 2a$$

1) II)
$$2x_1 + 3x_2 + 3x_3 = 2 - 3x_3$$

III) $4x_1 + 3x_2 + 2x_3 = 3$

$$I) \quad 2x_1 \quad -4x_2 \quad +x_3 \quad = \quad 3$$

e) II)
$$x_1 + 2x_2 + 2x_3 = 1$$

III)
$$3x_1 - 2x_2 + ax_3 = 5$$

I)
$$x_1 + 2x_2 + x_3 = a$$

I)
$$x_1 + 2x_2 + x_3 = a$$

f) II) $2x_1 + 6x_2 + 5x_3 = 4$

III)
$$x_1 +6x_2 +7x_3 = 2a-2$$

4. Bestimmen sie die Werte des Parameters $a \in \mathbb{R}$, für die das folgende Gleichungssystem keine, eine bzw. unendlich viele Lösungen besitzt.

$$2x_1 -ax_2 +2x_3 = 2$$

$$-x_1 + x_2 + (a-1)x_3 = 2$$

 $x_1 - 3x_2 + x_3 = 1$

Lineare Gleichungssysteme mit Parameter Lösung

- 1.
- a) Gleichungssystem unlösbar für a = 0.
- b) System unlösbar für a = 1.
- 2.
- a) Für a = 0 existieren unendlich viele Lösungen.
- b) Für a = -3 existieren unendlich viele Lösungen.
- 3.
- a) 1. Fall: a = 0 unendlich viele Lösungen

z.B. L =
$$\{(x; y) | y = -\frac{1}{2}x + 1 \land x \in \mathbb{R} \}$$

- 2. Fall: $a \neq 0$
- $L = \{(2; 0)\}$
- b) 1. Fall: a = 1 Widerspruch L = Ø
 - 2. Fall: $a \neq 1$ $L = \left\{ \left(\frac{1}{3a-3}; \frac{-5a+6}{3a-3} \right) \right\}$
- c) 1. Fall: a = 4
 unendlich viele Lösungen
 L = Ø
 - 2. Fall: $a \neq 4$ $L = \{(-2; 1; 0)\}$
- d) $L = \{(1; -1 + 2a; 1 3a)\}$
- e) 1. Fall: a = 3 Widerspruch L = Ø
 - 2. Fall: $a \neq 3$ eine (von a abhängige) Lösung $L = \left\{ \left(\frac{5(a-4)}{4(a-3)}; \frac{-a}{8(a-3)}; \frac{1}{a-3} \right) \right\}$
- f) 1. Fall: a = 2Unendlich viele Lösungen $L = \{(x_1; x_2; x_3) \mid x_1 = 3a - 4 - 4x_3 \land x_2 = 2 - a - \frac{3}{2}x_3 \land x_3 \in \mathbb{R} \}$

2. Fall: $a \neq 2$ Widerspruch $L = \emptyset$

4.

1. Fall: $a \in \mathbb{R} \setminus \{0; 6\}$ 2. Fall: a = 0

genau eine Lösung keine Lösung unendlich viele Lösungen 3. Fall: a = 6