

Differenzenquotient Übung

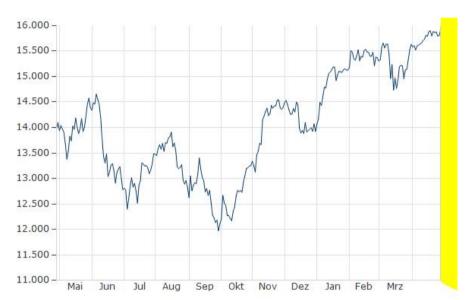
- 1. Zeichnen Sie die Sekante im gegebenen Bereich ein und lesen Sie deren Steigung ab.
 - a) Für $f(x) = -x^2 + 3x + 2$ im Bereich $x \in [1; 3]$.

b) Für $f(x) = \frac{1}{4}(x^2 - 1)(x - 4)$ im Bereich $x \in [0; 4]$.

2. Berechnen Sie die Differenzenquotienten folgender Funktionen im angegebenen Bereich.

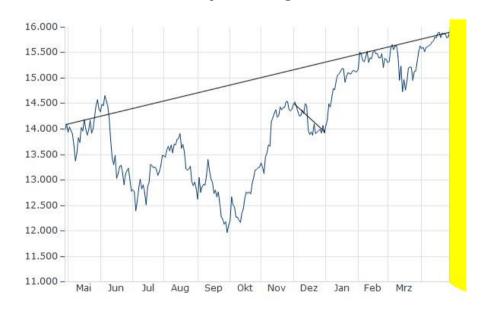
a)
$$f(x) = 2x - 3$$
 für $x \in [-1, 4]$.

b)
$$f(x) = -\frac{1}{2}x^2 + 2x + 1$$
 für $x \in [0; 4]$.


c)
$$f(x) = x^4 + 2x - 2 \text{ für } x \in [-1; 0].$$

3. Stellen Sie die Gleichung der Sekante des Graphen von $f(x) = \frac{3}{2}x^2 - \frac{3}{2}x - 1$ mit der Definitionsmenge $D_f = \mathbb{R}$ durch die Punkte $P_1(-2; y_1)$ und $P_2(1; y_2)$ auf!

4. Das untere Schaubild zeigt die Entwicklung des deutschen Aktienindex (DAX Performance Index, jeweilige Tagesschlusskurse) über den Zeitraum von einem Jahr zwischen 29. April 2022 und 28. April 2023. (Quelle: www.finanzen.net vom 28.04.2023). Es wurden unter anderem folgende Tageschlusskurse notiert:


29.04.2022	14 097,88
01.12.2022	14 490,30
30.12.2022	13 923,59
28.04.2023	15 922,38

Berechnen Sie den Wert des Differenzenquotienten für das gesamte Jahr bzw. für Dezember 2022, wenn der 30. Dezember der letzte Handelstag des DAX war. Erläutern Sie jeweils deren Bedeutung.

Differenzenquotient Lösung

- 1.
- a) $m_S = -1$
- b) $m_S = -\frac{1}{4}$
- 2.
- a) $m_S = 2$
- b) $m_S = 0$
- c) $m_S = 1$
- 3. $P_0(-2; 8)$; $P_1(1; -1)$; g: y = -3x + 2;
- 4. Der DAX ist im gesamten Jahresverlauf um 1824,50 Punkte pro Jahr gestiegen. Im Dezember 2022 ist er um 566,71 Punkte pro Monat gefallen.

